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Abstract

This report presents a fast hybrid volume-surface integral equation approach for the computation
of electromagnetic scattering from composite left-handed materials (LHM) such as split-ring res-
onators (SRR) with wires. The volume electric field integral equation (EFIE) is applied to the
dielectric region of this LHM, and the surface electric field integral equation is applied on the
conducting surface. The method of moments (MoM) is used to discretize the integral equation
into a matrix solution and adaptive integral method (AIM) is employed to reduce the memory
requirement and CPU time for the matrix solution. The present approach is sufficiently versatile
in handling scattering problems of such composite LHMs, due to the combination of volume and
surface electric field integral equations. This algorithm is first verified in a scattering problem of
an ordinary composite right-handed material structure. Then we use the algorithm to find the
resonance frequency of a few SRRs. In order to demonstrate the accuracy and efficiency of this
technique, we present the numerical results of calculating the radar cross section (RCS) of such an
SRR slab. Then based on previous knowledge of such structure, we designed a new left-handed
structure on microstrip line with capacitor gaps. Simulation results show the backward-wave char-
acteristic of this structure. And then we apply this structure in antenna design to improve the
performance of an ordinary microstrip-feed patch antenna. The antenna’s bandwidth is greatly
broadened while the VSWR remains very low and radiation efficiency is high. In the end, some
future research proposals focus on interesting and practical topics are also included in the report.
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Chapter 1

Introduction

Recently, left-handed material(LHM), which is also known as negative index media (NIM), has
attracted a great deal of attention. These materials exhibit a negative refraction index n, and
therefore can have very interesting properties, e.g., the phase and group velocities of electromag-
netic waves in this material are opposite. Since the E and H fields and the wave vector k of a
propagating plane EM wave form a left-handed system in these materials, Veselago [1] introduced
the term “left-handed materials” in his seminal work published in 1968. The interest in Veselago’s
work was renewed since Pendry et al. [2] proposed an artificial material consisting of the so called
split-ring resonators (SRRs) as shown in Figure 1.2, which exhibit a band of negative μ values in
spite of being made of non-magnetic materials and wires which provide the negative ε behavior.
Based on Pendry’s suggestions and targeting the original idea of Veselago, Smith et al. demon-
strated in 2000 the realization of the first left-handed material which consisted of an array of split
ring resonators (SRRs) and thin wires in alternating layers [3]. To date, the range of imaginable
applications of left-handed materials extends to the field of antenna design, vehicle coatings for
altering radar cross section properties, and lenses [4].

Since the original microwave experiment of Smith et al., several LHMs were fabricated [5][6] that
exhibited a pass band in which it was assumed that ε and μ are both negative. This assumption
was based on transmission measurements of the wires alone, the SRR alone, and the LHMs. The
occurrence of a LHM transmission peak within the stop bands of the SRR and wire structures
was taken as evidence for the appearance of LHM behavior. Further support to this interpretation
was provided by the demonstration that such LHMs exhibit negative refraction of EM waves [7][8].
Moreover, there is a significant amount of numerical work [9][10][11][12] in which the transmission
and reflection data are calculated for a finite length of metamaterial. A retrieval procedure can
then be applied to obtain the metamaterial parameters ε and μ under the assumption that it can
be treated as homogeneous. This procedure was applied in [13] and confirmed that a medium
composed of SRRs and wires could indeed be characterized by effective ε and μ whose real parts
were both negative over a finite frequency band, as was the real part of the refractive index n.
However, it was recently shown [14] that the SRRs exhibit a resonant electric response in addition
to their resonant magnetic response, and therefore, make the understanding and the fabrication of
true LHMs more challenging.

1



Chapter 1. Introduction 2

Figure 1.1: Poyntings vector and the wave vector for wave propagations in right-handed and left-
handed materials.

Figure 1.2: Round and square split-ring resonators
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To design such artificial materials for different specific engineering applications, simulation tools
are essential for saving efforts and costs. The numerical methods for characterizing these struc-
tures are still those fundamental numerical simulation techniques, i.e., the differential-equation
(DE) method [15][16], the integral-equation (IE) method [17][18], and the equivalent-circuit models
[19][20]. Among the three methods usually utilized for designing artificial synthetic materials, the
electromagnetic solver developed based on the method of moments (MoM) for solving the hybrid
volume-surface integral equation (VSIE)[21] is rigorous and widely adopted in various electromag-
netic simulations. It is certainly a very good option for analyzing electromagnetic characteristics
of metamaterials. The method of moment is one of the most popular numerical method for solving
boundary-value problems in electromagnetic.

However, the MoM will lead to a full matrix whose numerical iterative solution requires O(NiterN
2)

operations and O(N2) memory to store the matrix elements, where N and Niter denote the num-
ber of unknows and number of iterations, respectively [22]. The computational cost and memory
requirement will increase much faster with the larger number of unknowns. On one hand, the
operating frequency of electromagnetic waves in a medium of metamaterials falls usually within
the microwave frequency band or even higher. On the other hand, the spacings and dimensions
of conducting inclusions that compose the artificial media are required to be much smaller than
the wave-length in order to synthesize a practical continuous material so that the number of in-
clusions is numerous and the resultant total number of unknowns is very large, even though the
dimensions of such synthesized metamaterials are electrically small in this frequency band. To
achieve this objective, a fast algorithm has to be integrated into the MoM procedure to accelerate
the matrix-vector multiplications.

In Chapter 2, we discussed some special characteristic of split-ring resonators as well as the
adaptive integral method (AIM). Here we AIM into the scattering problem of LHM. It was a fast
integral-equation solver applicable to large-scale electromagnetic scattering problems which was
described by Bleszynski [23][24] for the first time in 1996. In this approach, the field generated by
a given current distribution is decomposed into near and far field components. The near field is
computed using the conventional method of moments technique with the Galerkin discretization.
The far field is calculated by approximating the original current distribution by an equivalent
current distribution on a regular Cartesian grid, such that the two currents have identical multipole
moments up to a required order m. As the result of this discretization, the original full impedance
matrix is decomposed into a sum of a sparse matrix (corresponding to the near field component)
and a product of sparse and Toeplits matrices [25] (corresponding to the far field component).
Because of the convolution nature of the Toeplits kernel, the field generated by the equivalent
current distribution can be then obtained by means of discrete Fast Fourier transforms.

In Chapter 3, we show the numerical result of our simulations based on this AIM algorithm.
First, we design the size and shape of our structure. Then with AIM, we calculated the radar
cross section (RCS) of a few SRR inclusions at an estimated frequency range to find the resonance
frequency of this particular structure. At the vicinity of this frequency, we examine the RCS
of a SRR slab with different kinds of plane-wave input. From the result, we find that when
the input plane wave satisfy the magnetic resonance condition for SRR [14], the power can be
transferred which satisfy the property of double-negative. However, when the input doesn’t satisfy
the resonance condition, the scattered electric field is very weak since the whole slab becomes no
more than a ordinary scatterer. Then on one hand, this phenomenon obtained re-proved the LH
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property of this SRR slab, on the other hand, it confirms that our AIM algorithm is an efficient
and accurate solver to analyze composite LHM.

In Chapter 4, we present some newly designed left-handed structures and make necessary im-
provement to broaden the bandwidth. The new structure is applied in the fabrication of patch
antenna to enhance the performance. Good agreements are achieved between simulation results
and practical measurements. The antenna performs well with high gain, low loss and wide band.

In Chapter 5, future research topics and possible method is proposed.



Chapter 2

Split-Ring Resonators and Adaptive
Integral Method

2.1 Split-Ring Resonators

Currently, the metamaterials under study are composed of a periodic arrangement of metallic
printed lines (or rods) that exhibit a negative permittivity, and split-ring resonators (SRRs) that
exhibit a negative permeability. To understand how these metamaterials function, it is best to
follow the historical steps that lead to the current geometry. First, it was shown that a 3-D array
of thin, continuous (very long) metal wires exhibit a resonant frequency response similar to that of
a plasma medium [26] [27]. At frequencies below the resonant frequency, the permittivity becomes
negative, the wave vector is imaginary, and there is no transmission. Above the resonant frequency,
the permittivity is real and transmission occurs. Second, it was demonstrated that negative per-
meability could be achieved using an array of SRRs [2]. The SRRs act like magnetic dipoles, with
a resonant response resulting from internal inductance and capacitance. Close to resonance, the
SRRs produce strong magnetic fields whose directions oppose the incident magnetic field, resulting
in a negative effective permeability. Finally, once the negative permeability structures had been
discovered, finding ways of combining them with negative permittivity structures was the next
step in research, leading to the well known geometry shown in [28]. However, the demonstration
of the LH properties of a metamaterial is not as straightforward as it seems, and showing that
permittivity and permeability are separately negative over a similar frequency band does not im-
ply that they remain so when the rods and SRRs are combined into a unique geometry. One of
the first observations of the LH nature of these metamaterial structures was inferred by observing
transmission and reflection coefficients over a wide frequency band. For the separate geometries
(rods only or SRRs only), as shown in Figure 2.3 no transmission occurs because of an imagi-
nary wave number. In the frequency band where the two parameters are simultaneously negative,
transmission occurs when the combined geometry is considered. This band-pass phenomenon was
indeed observed in these metamaterials [28]. However, as mentioned before, this transmission is
not sufficient to conclude that the material is exhibiting LH behavior, since the interaction between
the SRRs and rods could result in a positive permittivity and permeability, which would also yield
transmission. To solve this problem Moss et al. did a more rigorous test to demonstrate the LH

5
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Figure 2.1: Split-rings resonators with rods

Figure 2.2: Split-ring resonators with wires
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Figure 2.3: Different combination of ε and μ

nature of a material [29] which show that the combination of SRRs and rods does yield a pass
band of double negative. So, base on all these research result, we use SRR structure in further
modeling and simulation.

2.2 Method of Moments

To design and compute the EM field of such artificial materials, simulation tools are essential
for saving efforts and costs. The numerical methods for characterizing these structures are still
those fundamental numerical simulation techniques, i.e., the differential-equation (DE) method
[15][16],the integral-equation (IE) method [17][18], and the equivalent-circuit models [19][20]. Among
the three methods usually utilized for designing artificial synthetic materials, the electromagnetic
solver developed based on the method of moments (MoM) for solving the hybrid volume-surface
integral equation (VSIE)[21] is rigorous and widely adopted in various electromagnetic simulations.

The method of moments (MoM) is a general procedure for solving linear equations. Consider
the inhomogeneous equation

L(f) = g (2.1)

where L is a linear operator, g is known, and f is to be determined. Let f be expanded in a series
of functions f1, f2, f3, . . . in the domain of L, as

f =
∑
n

αnfn (2.2)

where the αn are constants. We shall call the fn expansion functions or basis functions. For exact
solution, (2.2) is usually an infinite summation and the fn form a complete set of basis functions.
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For approximate solution, (2.2) is a finite summation. Substituting (2.2) in (2.1), and using the
linearity of L, we have ∑

n

αnL(fn) = g (2.3)

It is assumed that a suitable inner product < f, g > has been determined for the problem. Now
define a set of weighting functions, or testing functions, w1, w2, w3, . . . in the range of L and take
the inner product of (2.3) with each wm. The result is∑

n

αn < wm, Lfn >=< wm, g > (2.4)

m = 1, 2, 3, . . . This set of equations can be written in matrix form as

[lmn][αn] = [gm] (2.5)

where

[lmn] =

⎡
⎣< w1, Lf1 > < w1, Lf2 > · · ·
< w2, Lf1 > < w2, Lf2 > · · ·

· · · · · · · · ·

⎤
⎦ (2.6)

[αn] =

⎡
⎢⎣
α1

α2
...

⎤
⎥⎦ [gm] =

⎡
⎢⎣

< w1, g >
< w2, g >

...

⎤
⎥⎦ (2.7)

If the matrix [l] is nonsingular it inverse [l−1] exists. The αn are then given by

[αn] = [l−1
nm][gm] (2.8)

and the solution for f is given by (2.2). For concise expression of this result, define the matrix of
functions

[f̃n] =
[
f1 f2 f3 · · ·] (2.9)

and write

f = [f̃n][l−1
mn][gm] (2.10)

This solution may be exact or approximate, depending upon the choice of the fn and wn. The
particular choice wn = fn is known as the Galerkin’s method.

If the matrix [l] is of infinite order, it can be inverted only in special cases, for example, if it is
diagonal. The classical eigenfunction method leads to a diagonal matrix, and can be thought of as
a special case of the method of moments. If the sets fn and wn are finite, the matrix is of finite
order, and can be inverted by known method.

One of the main tasks in may particular problem is the choice of the fn and wn. The fn should
be linearly independent and chosen so that some superposition can be approximated f reasonably
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well. The wn should also be linearly chosen so that the products < wn, g > depend on relatively
independent properties of g. Some additional factors which affect the choice of fn and wn are the
accuracy of solution desired, the ease of evaluation of the matrix elements, the size of the matrix
that can be inverted, and the realization of a well-conditioned matrix [l]

However, the MoM will lead to a full matrix. The matrix equation can be solved using a
conventional direct solver or an iterative solver. A direct solver requires O(N3) operations to solve
the equation while an iterative solver requires O(NiterN

2) operations. Both solvers require O(N2)
memory storage to store the matrix elements where N and Niter denote the number of unknows
and number of iterations, respectively [22]. These stringent requirements have prevented the use
of the conventional MoM to solve problems with a large number of unknowns. The computational
cost and memory requirement will increase much faster with the larger number of unknowns. On
one hand, the operating frequency of electromagnetic waves in a medium of metamaterials falls
usually within the microwave frequency band or even higher. On the other hand, the spacings and
dimensions of conducting inclusions that compose the artificial media are required to be smaller
than the wave-length in order to synthesize a practical continuous material so that the number
of inclusions is numerous and the resultant total number of unknowns is very large, even though
the dimensions of such synthesized metamaterials are electrically small in this frequency band. To
achieve this objective, a fast algorithm has to be integrated into the MoM procedure to accelerate
the matrix-vector multiplications.

2.3 Adaptive Integral Method

2.3.1 the Advantages of Adaptive Integral Method (AIM)

There are three major fast algorithms recently developed to overcome the problem of large memory
requirement and computational complexity caused by MoM.

1) Fast multipole method (FMM) [30, 31] and its extension, multilevel fast multipole algorithm
(MLFMA) [32], exhibit computational complexity on the order of O(N1.5) and O(N log N), re-
spectively. However, a large value of N is required to gain advantage over the MoM, and certainly
this is satisfied mostly when the FMM or MLFMA is employed.

2) Conjugate gradient fast Fourier transform (CG-FFT) as a grid-based fast algorithm has
been also used widely to solve the scattering problem formulated by surface integral equation
(SIE) and volume integral equation (VIE) [33]. The attracting feature of CG-FFT is the memory
requirement and computational complexity are of O(N log N) and O(N), respectively. However,
the major drawback of this method is the staircase approximation due to the usage of uniform
rectangular grid to model arbitrarily shaped object, and therefore the resulted staircase error.

3) The adaptive integral method (AIM) has been proposed to overcome the shortcomings of
CG-FFT. It was initially proposed to solve scattering problem of conducting objects [23, 24]. The
AIM and its counterpart, precorrected FFT (P-FFT), were also used to solve the other problem
formulated using the surface integral equation (SIE) [34]. Recently, Zhang and Liu have used the
AIM to solve the scattering problem formulated using VIE [35]. The computational complexity
for AIM is O(N1.5 log N) and O(N log N) for surface and volume scatterers, respectively.
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Later in this report, this AIM will be applied for computing the electromagnetic scattering by
the SRR structures to examine their LH property.

2.3.2 Introduction of Hybrid Volume-Surface Integral Equation

The scattering problem of mixed dielectric and conducting objects can be formulated using SIE
or the combination VIE and SIE. The scattering by conducting objects is usually characterized
by using the SIE, but the choice of using SIE or VIE for dielectric object depends on its inhomo-
geneity. For an object with arbitrary inhomogeneity, solving the scattering problem using VIE will
be more advantageous than SIE, as the latter requires the integral equations to be formulated in
every dielectric regions. However, if the object consists of only piecewise homogeneous dielectric
materials, then SIE formulation is generally preferred. The formulation of mixed dielectric and
conducting object problem using only SIE can be found in the literature [36][37]. Another for-
mulation that involves both the VIE and SIE was made to describe the scattering by dielectric
and conducting bodies and then to combine them together to form hybrid volume-surface integral
equation (VSIE) [38]. We found this method is useful to SRR structure since VIE and SIE can be
applied to describe the EM field in the dielectric region and conducting surface separately.

And, for closed conducting body, the combined field integral equation (CFIE) can be used as it
eliminates interior resonance problem and it normally yields a better conditioned matrix equation
as compared to electric field integral equation (EFIE) or magnetic field integral equation (MFIE).
However, for the open conducting body like SRR, the MFIE can not be used. So here we use EFIE
only for SIE.

2.3.3 Formulations For Hybrid Volume-Surface Integral Equation

In this section, we discuss the formulations for VSIE.

First, we consider a general case of an arbitrarily shaped three-dimensional (3-D) scatterer,
which consists of homogeneous or inhomogeneous dielectric material and conducting body as shown
in Figure 2.4. The object is embedded in an isotropic homogeneous background medium with
permittivity εb and permeability μb. The scatterer is illuminated by an incident wave Einc, which
is excited by impressed sources in the background media. The dielectric region V is assumed to
have the permeability μ = μb and complex dielectric constant ε̃ = ε(r) − jσ(r)/ω where ε(r) and
σ(r) are permittivity and conductivity, respectively, at r. Inside the dielectric region V and on the
surface of conducting body S, the incident wave induces volume current JV and surface current
JS. The scattered electric field Esca and magnetic field Hsca produced by the induced volume
and surface currents are given by

Esca
Ω (r) = −jkbηbAΩ(r) −∇ΦΩ(r), Ω = S or V (2.11)

Hsca
Ω (r) = ∇× AΩ(r), Ω = S or V (2.12)

where the magnetic vector potential is defined as:

AΩ(r) =
∫
Ω JΩ(r′)g(r, r′)dr′, Ω = S or V (2.13)
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Figure 2.4: Geometry of scatterer consisting of dielectric material and conducting body embedded
in an isotropic homogeneous medium

and the electric scalar potential is defined as:

ΦΩ(r) = − ηb
jkb

∫
Ω ∇′ · JΩ(r′)g(r, r′dr′), Ω = S or V (2.14)

with g(r, r′) = e−jkb|r−r′|
4π|r−r′| , ηb =

√
μb
εb

, and kb as the wavenumber of background medium

In the dielectric region V , by taking the scattered field from the surface current into considera-
tion, the total electric field becomes

E(r) = Einc(r) + Esca
V (r) + Esca

S (r) (2.15)

and the induced volume current is defined as

JV = jω(ε̃ − εb)E (2.16)

Similarly, the scattered field by induced volume current also contributes to the total field on S.
Since the tangential components of total electric field vanish on conducting surface, we get

n̂ × Einc(r) = −n̂ × Esca
V (r) − n̂ × Esca

S (r) (2.17)

Equations 2.15 and 2.17 are known as the EFIE as the formulations involve only electric field. For a
closed conducting surface, the MFIE can be obtained by considering the tangential components of
the total magnetic field on the conducting surface, which are equal to the induced surface current
components. Since we’ll not use MFIE here, we do not list the equations here.

2.3.4 RWG and SWG basis function

As we mentioned in the section of MoM, we must have basis functions to expand the current
on conducting surface and dielectric volume. These basis functions must be associated with the
surface and volume element we get after discretization. Here in our problem, the volume of dielectric
material and surface of conducting body are discretized into tetrahedral elements and triangular
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patches, respectively. These elements are used because of their flexibility to model arbitrarily
shaped 3-D object. Then the surface current is expanded using vector basis function fS, which has
constant-normal and linear-tangential (CN/LT) components along the edge

JS =
NS∑
n=1

IS
n fS

n (2.18)

As for the dielectric region, the electric flux D is expanded using appropriate volume CN/LT basis
functions fV as follows:

D = ε̃(r)E =
NV∑
n=1

IV
n fV

n (2.19)

by use of equation 2.16, the induced volume current is expressed as

JV = jω

NV∑
n=1

ε̃(r) − ε0

ε̃(r)
IV
n fV

n = jω

NV∑
n=1

κ(r)IV
n fV

n (2.20)

where κ(r) = ε̃(r)−ε0

ε̃(r) is the contrast ratio and ε̃(r) is the permeability of a tetrahedron element.

In this report, the CN/LT basis functions that have been used are SWG basis function [39] and
RWG basis function [40] for the induced volume current and surface current, respectively. The SWG
basis function is defined on a pair of tetrahedral elements while the RWG basis function is defined
on a pair of triangular patches. The properties of SWG and RWG basis functions for example,
the continuity of the electric flux density normal to the interior face (SWG) and the continuity of
the surface current normal to the interior edge (RWG) make them suitable to efficiently discretize
the previous integral equations. The formulas for SWG and RWG basis function as well as the
testing procedure we used in our simulation program will not be list here since the these complicated
formulas are not our main point. However, they can be found in the Appendix. It is also noted that
during discretization of the object, the triangular patches are generated such that it is coincided
with the surface of tetrahedron. Using the volume basis function to test (2.15) and the surface
basis function to test (2.17), the hybrid integral equations will be converted into a matrix equation
system as: [

Z̄
V V

Z̄
V S

Z̄
SV

Z̄
SS

][
IV

IS

]
=
[

EV

ES

]
(2.21)

where the vectors IV and IS represent the coefficients of volume current and surface current
respectively. The excitation vector can be computed using

EV
m =

∫
Vm

fV
m · Einc(r′)dr′ (2.22)

ES
m =

∫
Sm

fS
m · Einc(r′)dr′ (2.23)
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while the elements of the block matrices in (2.21) can be computed using the formulas shown
below:

ZV V
mn =

∫
Vm

fV
mfV

n

ε̃
dr

−ωkbηb

∫
Vm

fV
m

[∫
Vn

κfV
n g(r, r′)dr′ +

∇
k2

b

∫
Vn

∇′ · (κfV
n

)
g(r, r′)

]
dr (2.24a)

ZV S
mn = jkbηb

∫
Vm

fV
m ·
[∫

Sn

fs
ng(r, r′)dr′ +

∇
k2

b

∫
Sn

∇′ · fS
ng(r, r′)dr′

]
dr (2.24b)

ZSV
mn = −ωkbηb

∫
Sm

fS
m ·
[∫

Vn

κfV
n g(r, r′)dr′ +

∇
k2

b

∫
Vn

∇′ · (κfV
n

)
g(r, r′)dr′

]
dr (2.24c)

ZSS
mn = jkbηb

∫
Sm

fS
m ·
[∫

Sn

fS
ng(r, r′)dr′ +

∇
k2

b

∫
Sn

∇′ · fS
ng(r, r′)dr′

]
dr (2.24d)

κ is a constant value within the tetrahedron and can be taken out from the integration.

Besides, we can also write

∇ · (κfV
n

)
= κ∇ · fV

n + ∇κ · fV
n (2.25)

and the second term given by 2.25 as:

∇κ · fV
n =

{
IV
n (κ+

n − κ−
n ), on the common facet

0, elsewhere
(2.26)

2.3.5 Formulations for AIM

The AIM has been used to reduce the memory requirement and to accelerate the matrix-vector
multiplication in iterative solver. The basic idea of AIM is to approximate the far-zone interac-
tion using the FFT, and then to compute the near-zone interaction directly. This matrix-vector
multiplication can be split into two parts, i.e.

Z̄I = Z̄
near

I + Z̄
far

I (2.27)

where Z̄
nearis a sparse matrix that contains only the nearby elements within a threshold distance

and Z̄
far represents the farzone interaction of the elements.

The matrix-vector multiplication implemented inside the AIM solver can be summarized suing
the following steps [41]:

• project the patch currents, either using multipole [23] expansion or far-field matching[42], to
the surrounding grids;

• compute the grid potentials using FFT;

• interpolate the potentials back to the patch; and
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• compute the correct near-field interaction for each of the patches.

To employ the AIM, the object is enclosed in a rectangular grid and then recursively subdivided
into small rectangular grids. In order to use FFT to approximate the far-zone interaction, we need
to transform the SWG and RWG basis functions into the Cartesian grids. It is noted that by using
vector identity and divergence theorem, the ∇ operator in (2.24) can be shifted and operated on
the testing function [39], [40]. Hence we can denote γn to represent any one of the components
{fS , κfV ,∇ · (κfV )} and express all the matrix elements in (2.24) in the following unified form:

Zmn =
∫

αm

∫
αn

γm(r)g(r, r′)γn(r′)dr′dr (2.28)

The transformation function γn(r) can be approximated as a linear combination of Dirac delta
functions, i.e.

γn(r) ≈ γ̂(r) =
(m+1)3∑

u=1

Λnuδ(r − r′) (2.29)

where M is the expansion order and Λnu denotes the expansion coefficients of γn(r). Λnu can be
determined using the multipole expansion or far-field approximation [34]. The multipole expansion
method is based on the criterion that the coefficients Λnu produce the same multipole moments of
the original basis function∫

αn

γn(r)(x − x0)m1(y − y0)m2(z − z0)m3dr

=
(m+1)3∑

u=1

(xnu − x0)m1(ynu − y0)m2(znu − z0)m3Λnu (2.30)

for 0 ≤ {m1,m2,m3} ≤ M

where the reference point r0 = (x0, y0, z0) is chosen as the center of the basis function. The far-field
approximation method matches the far-fields produced by γn(r) and γ̂n(r) on a unit sphere, and
it thus obtains the expansion coefficients. Once the transformation function has been determined,
the matrix elements can be approximated as

Ẑmn =
(m+1)3∑

v=1

(m+1)3∑
u=1

Λmvg(rv, r
′
u)Λnu (2.31)

By using the transformation function, now we are able to compute the two components in the
matrix-vector multiplication in A.12 with

Z̄
far = Λ̄ḡΛ̄T (2.32a)

Z̄
near = Z̄

MoM
nz − Z̄

far (2.32b)

where Z̄near is the matrix containing only the direct interaction of neighbor elements and Λ̄
represents the basis transformation matrix of the elements. The matrix ḡ is Toeplitz, and this
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enables the use of FFT to compute the 3-D convolution in the 2.32a efficiently. Hence we can
represent the matrix-vector multiplication as

Z̄I = Z̄
near

I + Z̄
far

I

= Z̄
near

I + Λ̄�−1
{
�{ḡ} · �{Λ̄T

I}
}

(2.33)

where �{•} and �−1{•} stand for FFT and inverse FFT respectively.



Chapter 3

Numerical Result for AIM

3.1 Validation of the VSIE-AIM Algorithm

An example is considered for validating the accuracy of the code developed. We consider a coated
dielectric sphere having a radius of 1 m. The core of the sphere has a radius of 0.9 m and a
relative permittivity of εr1 = 1.4 − 0.3j, and the thickness of coating layer is 0.1m with a relative
permittivity of εr2 = 1.6 − 0.8j. The bistatic radar cross section(RCS) for the VV- and HH-
polarizations at 750 MHz are computed and the results are shown in Figure 3.1. The results are
compared with Mie series solutions and good agreements have been observed in the comparisons.
So, in the next step we apply this algorithm in the scattering problem of SRR structure.

3.2 Resonance Frequency of SRRs

3.2.1 Geometry Statement of SRR structure

Here we choose square shape SRR structure instead of round shape SRR structure since the it
is easier to mesh and hence, easier for us to get an accurate result since when we mesh the
conducting surface into triangular patches without any mesh-induced segment and apply the SWG
basis function to the patches.

3.2.2 Resonance Frequency of SRRs

First, we consider one row of SRR structure (3 inclusions placed side by side along y-). The
geometry and dimensions of this kind of inclusions are shown in Figure 3.2. The width of all metal
strips is 0.25mm, the thickness of dielectric is 0.254mm and the length of each dielectric square
is 3.3mm. All the rings and wires are place at the center of each dielectric square. The relative
permittivity of dielectric is set to be ε = 1.

We examine the scattering cross section (SCS) [9] of this row of 3 elements and plot it verses
frequency in Figure 3.5. It can be seen that the resonant frequency is approximately 15.80 GHz.

16
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Figure 3.1: Bistatic RCS of a coated dielectric sphere (a1 = 0.9 m, εr1 = 1.4 − 0.3j; a2 = 1 m,
εr2 = 1.6 − 0.8j) at 750 MHz.

Figure 3.2: The front and back view of 1 SRR inclusion
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Figure 3.3: The rings view of 1 row of SRRs (inclusions)

Figure 3.4: The wire view of 1 row of SRRs (inclusions)

Figure 3.5: SCS versus frequency for a row of inclusions (3 SRRs) at θ = φ = 90◦
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3.3 RCS of a SRR Slab With Different Plane-Waves as Illumina-
tor

Next, at this resonant frequency, we analyze the propagation characteristics of electromagnetic
wave in a LHM sample placed in the free space. It’s a LHM slab composed of many rows of
inclusions shown in Figure 3.2. The 3-D view of this slab is depicted in 3.6. The space distances of
the inclusions denoted, respectively, by dx, dy and dz in the x−, y− and z− directions, are all 3.3
mm. There are totally 54 SRR elements which are arranged into 18 rows along x− and 3 columns
along y−. In order to show that our AIM algorithm is suitable for this structure, we illuminate
the slab with two different plane waves coming from −y direction as shown in Figure 3.6, and then
we check the RCS of this SRR slab in each case. Actually, SRR requires the electric field Einc in
parallel with the plane of the ring (yOz plane) to get maximum magnetic resonant. In other words,
the rings are not supposed to be on the H−k plane [14]. So if Einc is perpendicular with the plane
of rings as show in case < 2 >, the RCS must be very small and the whole structure becomes no
more than an ordinary scatterer which does not acquire negative refractive index. Figure 3.3 to
Figure 3.10 show values of Ez and RCS when the illuminators are of case < 1 > and case < 2 >
respectively.

Figure 3.6: Structure of the slab composed by SRRs and wires with and two different incidents in
the reference frame

Another advantage of our program compared with other algorithm is that we include volume
element here. Thus, we can change the ε to observe the change of Ez and RCS very conveniently.
Here we use ε = 1.60 − 0.05j instead of ε = 1. Below are the plot of Ez and RCS versus φ at 15.8
GHz when the input are of case < 1 > and case < 2 > respectively.

Further more, Figures 3.15-3.18 listed below show the Ez and RCS of ε = 2.40 − 0.20j at
15.8 GHz when the slab under magnetic resonance and no magnetic resonance input respectively.
Before calculating the scattering field of this material, we first examine the resonant frequency
again to ensure the new slab works in the pass band of resonance. We found that the central
frequency changes less than 0.1Ghz which is actually a very small number compared with the
central frequency. So, we can still fix the frequency at 15.8 GHz which is in the pass band. From
the Ez and RCS result, we can observe a decrease in the scattering field which is due to higher
permittivity.
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Figure 3.7: Ez of the slab of case < 1 > at 15.8 GHz

Figure 3.8: RCS of the slab of case < 1 > at 15.8 GHz
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Figure 3.9: Ez of the slab of case < 2 > at 15.8 GHz

Figure 3.10: RCS of the slab of case < 2 > at 15.8 GHz
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Figure 3.11: Ez of the slab of case < 1 > at 15.8 GHz when ε = 1.60 − 0.05j

Figure 3.12: RCS of the slab of case < 1 > at 15.8 GHz when ε = 1.60 − 0.05j
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Figure 3.13: Ez of the slab of case < 2 > at 15.8 GHz when ε = 1.60 − 0.05j

Figure 3.14: RCS of the slab of case < 2 > at 15.8 GHz when ε = 1.60 − 0.05j
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Figure 3.15: Ez of the slab of case < 1 > at 15.8 GHz when ε = 2.40 − 0.20j

Figure 3.16: RCS of the slab of case < 1 > at 15.8 GHz when ε = 2.40 − 0.20j
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Figure 3.17: Ez of the slab of case < 2 > at 15.8 GHz when ε = 2.40 − 0.20j

Figure 3.18: RCS of the slab of case < 2 > at 15.8 GHz when ε = 2.40 − 0.20j
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3.4 Conclusion for AIM Algorithm

The structures of SRR with wires behave as a magnetic conductor in the vicinity of resonant
frequency. By applying the fast solver AIM, the CPU time per iteration as well as memory
requirement is greatly reduced. Even though some very expensive EM softwares can calculate
RCS and Ez for small scale problems, they are not capable in simulating large problems such as
SRR slab. SRR structures are often electrically small but have a large number of unknowns, so
AIM is especially suitable to analyze such kind of LHMs. And, since SRR is composed of dielectric
body and metal surface, we introduce both volume and surface into our program. After a rough
validation of the code, we first use a few inclusions to find the resonant frequency, then at the
vicinity of this frequency, an SRR slab is tested when the illuminator are two different plane waves
while only the first one can induce magnetic resonance. We find that when the magnetic resonance
is achieved, most power can be transferred to the other side of the slab which satisfies the property
of LHM. However, when there is no magnetic resonance, most power will not be able to go through
the slab. Then we change the permittivity of dielectric volume to observe it’s effect on scattered
field. The result prove that we achieve high precision with the lowest memory and CPU time cost,
and that our algorithm is efficient enough for any composite LHM design and simulation.



Chapter 4

Application of Left-handed Material
with New Designs

4.1 Microstrip Lines Loaded With Flower-shaped Left-handed Res-

onators

4.1.1 Introduction of Microstrip Lines Loaded with CSRR and Capatitors

In this work, microstrip lines loaded with flower-shaped left-handed resonators and series inter-
digital capacitors are modeled by means of a lumped element equivalent circuit. The structures
exhibit a left-handed (or backward wave) behavior at a relatively broad frequency range. That is a
huge improvement to the conventional SRR structure which has very narrow bandwidth and high
loss. Also, we explored the equivalent circuit at the left-handed frequency. The equivalent circuit
model is able to accurately describe the frequency responses of the structures in the left-handed
transmission band, the forbidden band, and the lower frequency region of the forward allowed
band. The limitations of this circuit model to properly predict the behavior of the structures at
higher frequencies (mainly related to the Bragg effect caused by periodicity) are pointed out.

Complementary split rings resonators (CSRRs) have been recently proposed by some of the
authors of this manuscript as new resonant constitutive elements for the synthesis of negative
permittivity metamaterials [43]. By combining these resonators with series capacitive gaps, one-
dimensional left-handed structures were implemented in microstrip technology [44].The required
negative value of the effective permeability to achieve left-handedness was due to the presence of
the series gaps, which make the structure to behave as a magnetic plasma, with negative value of
permeability up to a cutoff (or plasma) frequency. The frequency response of CSRR/gap-loaded
microstrip lines exhibits a left-handed (or backward wave) transmission band in that region were
negative permeability and permittivity simultaneously coexist, and this typically occurs in a narrow
(or moderate) band below the plasma frequency of the gap-related structure, i.e. in the vicinity
of the resonance frequency of CSRRs [44]. Above this band, the effective permittivity changes
sign and signal propagation is inhibited. However, above the plasma frequency also the effective
permeability of the artificial line switches to a positive value, and signal propagation is allowed,

27
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although wave transmission is forward, rather than backward. Thus, the typical behavior of these
resonant type left-handed lines is indeed similar to that of the so-called composite right-/left-
handed (CRLH) transmission lines, where a left-handed and a right-handed transmission bands,
separated by a frequency gap, are present [19]. In CRLH lines, the left-handed band, at lower
frequencies, is due to the presence of series gaps and shunt stubs loading the line, whereas forward
wave transmission is related to the parasitic elements of the host line. To properly model the
behavior of CSRR-based left-handed microstrip lines, a lumped element equivalent circuit model
has been previously proposed [45]. This model has been found to describe the frequency response
in the left-handed band to a good approximation. And the capability of the model to also predict
transmission line behavior above that band is explored by [46].

4.1.2 The Novel Planar Negative Refractive Index Structure

A novel 2D planar distributed NRI structure which is very likely the performance of CSRR, is
proposed previously by Naoko Natrunaga etc [47]. The structure consists of a 2D periodic array
of unit cells with metal patterns on the both sides of a substrate and it does not require any vias.
Without vias, is the structure scalable to millimeter-wave frequency range or above. It is also
advantageous that the structure can be fabricated by using conventional MMIC processes. The
structure were experimentally verified of the left-handed characteristics.

The structure is the planar structure with metal patterns on both the upper and lower layers
of the substrate as shown in Figure 4.1(a) and (b), respectively. Let us consider a square unit cell
with the period a in both the x and y directions for simplicity. The unit cell is depicted with the
dotted line in Figure 4.1(a) and (b). On the upper layer, are the 45- degree rotated square metal
patches with the sides. On the lower layer, four isosceles triangles surrounded by a square frame
are connected at their apex, and from the connected portion, four narrow metal strips are radially
connected to the outer frame in the unit cell. The upper layer pattern lies on the lower layer
pattern with the relation shown in 4.1(c). The upper metal patch overlaps the isosceles triangles
forming an MIM capacitor, which provides a large series capacitance between the adjacent unit
cells and a frequency band of negative ε. The four radial strips bridge the series capacitor and the
outer frame. When the area of the outer frame is large enough and has a quasi-ground voltage, the
bridging strips work as shunt inductances and can provide negative μ at a frequency band. When
the series capacitance and the shunt inductance are large enough, in other words, the negative ε
and negative μ appear at the same frequency band, the structure is verified that it can work as a
left-handed structure during a particular frequency [47].

However, before utilizing the structure in microstrip line, we find the bandwidth of such structure
as shown in Fig 4.2can be further improved by the changing the shape of isosceles triangles into
the flower-shape strip as shown in 4.3. To prove with this shape can obtain better performance, we
etch these two structures into the ground plane of a microstrip line to see the transmission ability
vs frequency. As we stated before, the isosceles triangle can provide negative μ in a frequency band
which will be stopband if we want to observe the S21 of these microstrip lines.

After we examined the stop-band of the structures shown in Figure 4.2 and Figure 4.3. The
stop-band for the original triangle structure is from 7-8GHz as shown in Figure 4.4, while the
modified flower structure’s stop-band is from 8.8-10.6GHz as shown in Figure 4.5. So we add
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Figure 4.1: Proposed 2D NRI structure. (a) Upper layer. (b) Lower layer. (c) Unit cell.

Figure 4.2: Top view of a microstrip line with 2 rows of triangle-shaped left-handed pattern on the
ground plane

Figure 4.3: Top view of a microstrip line with 2 rows of flower-shaped left-handed pattern on the
ground plane
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Figure 4.4: S-parameter of a microstrip line with 2 row of triangle-shape left-handed pattern on
the ground plane and interdigital capacitors on the stripline (red line represents S21 and blue line
represents S11

capacitor onto the microstrip line(Figure 4.6 and Figure 4.7), which finally provide a C-L circuit
and induce both negative μ and negative ε. Now the stop-band becomes a pass-band, and most
important, the pass-band is as wide as 2.5GHz as shown in Figure 4.8.

4.2 Microstrip-feed Patch Antenna with Left-handed Elements

4.2.1 Novel Patch Antenna with LH Element and Its Performance

In this section, we apply the triangle structure into the fabrication of patch antenna. The model
we designed is shown in Figure 4.9 and Figure 4.10. And the S11 of the proposed antenna is shown
in Figure 4.11. We can see that the bandwidth is from 5.1-9.2GHz. The VSWR is shown in Figure
4.12. Obviously, during the working band, the VSWR is effectively suppressed below 2. The 3D
radiation pattern at 7GHz and 8.1GHz is depicted in Figure 4.14 and Figure 4.15 respectively.
We can see that the radiation is mainly gathering at the direction of θ = 90◦, φ = 90◦ which is
quite different from a traditional patch antenna’s main radiation direction (θ = 0◦). This can be
explained by the transmission of backward wave from the feed line to the end of the substrate.

At the frequency of 7GHz, on θ = 90◦ plane, as shown in Figure 4.16, the main lobe magnitude
of the antenna is 4.9dBi. The main lobe direction is at φ = 105◦ and the angular width (3dB) is
67.1◦. The side lobe level is −3.5dB.

At the frequency of 8.1GHz, on θ = 90◦ plane, as shown in Figure 4.17, the main lobe magnitude
of the antenna is 6.3dBi. The main lobe direction is at φ = 100◦ and the angular width (3dB) is
57.2◦. The side lobe level is −4.8dB.

At the frequency of 7GHz, on φ = 90◦ plane, as shown in Figure 4.18, the main lobe magnitude
of the antenna is 4.2dBi, which is quite favorable for a single patch antenna. the main lobe direction
is at φ = 80◦ and the angular width (3dB) is 142.8◦.
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Figure 4.5: S-parameter of a microstrip line with 2 row of flower-shape left-handed pattern etched
on the ground plane and interdigital capacitors on the stripline (red line represents S21 and blue
line represents S11

Figure 4.6: Top view of a microstrip line with 1 row of flower-shape left-handed pattern on the
ground plane and interdigital capacitors on the stripline

Figure 4.7: Bottom view of a microstrip line with 1 row of flower-shape left-handed pattern on the
ground plane and interdigital capacitors on the stripline
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Figure 4.8: S-parameter of a microstrip line with 1 row of flower-shape left-handed pattern etched
on the ground plane and interdigital capacitors on the stripline (red line represents S21 and blue
line represents S11

Figure 4.9: Top view of the simulated antenna (blue part is substrate while pink part shows metal
surface)



Chapter 4. Application of Left-handed Material with New Designs 33

Figure 4.10: Bottom view of the simulated antenna (blue part is substrate while pink part shows
metal surface)

Figure 4.11: Simulated S11 against frequency of patch antenna with triangle shaped gaps on patch
and strip bridges on ground
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Figure 4.12: Simulated VSWR against frequency of patch antenna with triangle shaped gaps on
patch and strip bridges on ground

Figure 4.13: Simulated antenna balance vs frequency in the working band
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Figure 4.14: Simulated 3D radiation pattern at the frequency of 7GHz

Figure 4.15: Simulated 3D radiation pattern at the frequency of 8.1GHz
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Figure 4.16: Simulated radiation pattern at 7GHz on the plane of θ = 90◦

Figure 4.17: Simulated radiation pattern at 8.1GHz on the plane of θ = 90◦
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Figure 4.18: Simulated radiation pattern at 7GHz on the plane of φ = 90◦

At the frequency of 8.1GHz, on φ = 90◦ plane, as shown in Figure 4.19, the main lobe magnitude
of the antenna is 5.8dBi. The main lobe direction is at θ = 90◦ and the angular width (3dB) is
114.4◦. The side lobe level is about −7.6dB.

4.2.2 Conclusion for the Application

We fabricated the patch antenna as shown in Figure 4.20 and Figure 4.21 with left-handed patterns
and gaps etched on the patch and ground plane respectively. We find a good agreement between
the experimental results and the simulation prediction. This antenna overcome the disadvantage of
traditional patch antenna’s narrow bandwidth by enhance the radiation with left-handed element
we present in the previous sections. The radiation efficiency is very high, which shows most energy
is radiated rather than wasted thermally. At the mean time, the gain of such LH-enhanced antenna
is high, and the side lobes are well suppressed.
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Figure 4.19: Simulated radiation pattern at 8.1GHz on the plane of φ = 90◦

Figure 4.20: Top view of the fabricated antenna (ε=2.2, substrate thickness h=0.794mm, substrate
size=28.1mm×32mm, patch size=12mm×16mm)
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Figure 4.21: Bottom view of the fabricated antenna (width of gaps=0.4mm)



Chapter 5

Proposed Future Research Topics

Base on previous result, we can see an obvious pass band of the SRR slab. To be more convincing,
we are going to show more LH property of this SRR structure such as the negative refractive index.

In our future work, we plan to build a SRR prism as shown in Figure 5.2 and Figure 5.3. We can
use the devices shown in Figure 5.1 to measure the angle of refraction. The prism we design still
uses the basic SRR element shown in Figure 3.2. The whole prism is shown in Figure 5.2 and Figure
5.3. This model is built and meshed in FEKO 5.0 which require 9G memory to apply traditional
MoM. However, with our AIM algorithm, it is estimated that only 2G memory is required.

With this structure, we are expecting to observe an obvious negative refraction from the prism.
If this simulation can be performed successfully, we will go on with the implementation of our code.
For example, we will adopt periodic Green’s function to further reduce computation complexity. As
for the design of antenna, we can also include multi-layer Green’s function to enhance the accuracy
as well as the computation speed of the code [48][49]. Because a full-wave Greens function com-
pletely define the field inside a multi-layer dielectric structure due to a current element arbitrarily
placed between any two layers in two-dimensional spectral-domain form. It is derived by solving a
”standard” form containing the current element with two substrates on either side of it, and using
an iterative algorithm to take care of additional layers. Another iterative algorithm is then used to
find the field in any layer in terms of the field expressions in the two layers of the ”standard” form.

Figure 5.1: Special device for measurements of angles of refractions

40
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Figure 5.2: 3D view of SRR prism

Figure 5.3: Top view of SRR prism
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The locations of the poles of the Greens function can be predicted. Higher order interpolatory basis
functions defined on curvilinear triangular patches also can be used to provide necessary flexibility
and accuracy for the discretization of arbitrary shapes and to offer a better convergence than lower
order basis functions. The combination of the improved DCIM and the higher order basis functions
results in an efficient and accurate MoM analysis for 3-D multi-layer microstrip structures. So this
kind of Green’s function can be applied to a few multilayer transmission or radiation structures.
After all these work, our algorithm will become an even more powerful numerical simulation tool.

As to the design of new left-handed structure and application aspect, we can first extent the
LH-enhanced patch antenna into antenna array and see what further improvement can be made.
Then we can adopt various structures discovered with LH characteristics into a large variety of
devices such as microstrip filter, power divider, coupler [50] as well as antenna fabrication [51].
Many theoretical predictions and new LH patterns design have been done to serve the application.
However, to date, the design and fabrication of practical devices is still mainly based on the
traditional SRR or Ω structure which has extremely high loss and narrow bandwidth. To open a
new world of LHM application, we are going to make better use of current research result and try
to explore various practical applications.



Appendix A

Useful Formulations

A.1 RWG Basis Function – Triangular Modeling Method for Sur-

face Element

A.1.1 Development of RWG Basis Function

Let S denote the surface of an open or closed perfectly conducting scatterer. SWG is the short
for Rao-Wilton-Glisson basis function. Each basis function is associated with a interior edge (i.e.,
nonboundary edge ) of the patch model and is to vanish everywhere on S except in the two triangles
attached to that edge. Figure A.1 shows two such triangles, T+

n and T−
n , corresponding to the nth

edge of triangulated surface modeling a scatterer. Points in T+
n may be designated either by the

position vector r defined with respect to O, or by the free vertex of T+
n . Similar remarks apply to

the position vector ρ−n except that it is directed toward the free vertex of T−
n . The plus or minus

designation of the triangles is determined by the choice of a positive current reference direction for
the nth edge, the reference for which is assumed to be from T+

n to T−
n . We define the vector basis

function associated with the nth edge as

Figure A.1: Triangle pair and geometrical parameters associated with interior edge

43
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Figure A.2: Geometry for construction of component of basis function normal to edge

fn(r) =

⎧⎪⎨
⎪⎩

ln
2A+

n
ρ+

n , r ∈ T+
n ;

ln
2A−

n
ρ−n , r ∈ T−

n ;
0, otherwise.

(A.1)

where ln is the length of the edge and A±
n is the area of triangle T±

n . (Note that we use the
convention, followed throughout the report, that subscripts refer to edges while superscripts refer
to faces.) The basis function fn is used to approximately represent the surface current, and we
list and discuss below some properties which make it uniquely suited to this role.

1) The current has no component normal to the boundary (which excludes the common edge)
of the surface formed by the triangle pair T+

n and T−
n , and hence no line charges exist along this

boundary.

2) The component of current normal to the nth edge is constant and continuous across the
edge as may be seen with the aid of Figure A.2, which shows that the normal component of ρ±n
along edge n is just the height of triangle T±

n with edge n as the base and the height expressed as
(2A±

n )/ln. This latter factor normalizes fn in such that its flux density normal to edge n is unity,
ensuring continuity of current normal to the edge. This result, together with l), implies that all
edges of T+

n and T−
n are free of line charges.

3) The surface divergence of fn, which is proportional to the surface charge density associated
with the basis element, is

∇s · fn(r) =

⎧⎪⎨
⎪⎩

ln
A+

n
, r ∈ T+

n ,

− ln
A−

n
, r ∈ T−

n ,

0, otherwise.
(A.2)

since the surface divergence in T±
n is ±1

ρ±n
∂[±(ρ±n )2fn]

∂ρ±n
. The charge density is thus constant in each

triangle, the total charge associated with the triangle pair T+
n and T−

n is zero, and the basis
functions for the charge evidently have the form of pulse doublets.
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4) The moment of fn is given by (A+
n + A−

n )favg
n where

(A+
n + A−

n )favg
n ≡ ∫

T−n++T−
n

fndS

= ln
2 (ρc+

n + ρc−
n )

= ln(rc+
n + rc−

n ) (A.3)

and ρc±
n is the vector between the free vertex and the centroid of T±

n with ρc−
n directed toward

and ρc+
n directed away from the vertex, as shown in Figure A.1, and rc±

n is the vector from O to
the centroid of T±

n . (A.3) may be most easily derived by expressing the integral in terms of area
coordinates, to be discussed below.

The current on S may be approximated in terms of the fn, as

J ∼=
N∑

n=1

Infn(r) (A.4)

where N is the number of interior (nonboundary) edges. Since a basis function is associated
with each nonboundary edge of the triangulated structure, up to three basis functions may have
nonzero values within each triangular face. But at a given edge only the basis function associated
with that edge has a current component normal to the edge since, according to l), all other basis
currents in adjacent faces are parallel to the edge. Furthermore, since the normal component
of fn, at the nth edge is unity, each coefficient In, in (A.4) may be interpreted as the normal
component of current density flowing past the nth edge. Also, we see that the basis functions are
independent in each triangle since the current normal to the nth edge, In in (A.4), is an independent
quantity. At surface boundary edges, the sum of the normal components of current on opposite
sides of the surface cancel because of current continuity. Therefore we neither define nor include in
(A.4) contributions from basis functions associated with such edges. Because of the considerable
variation in the direction of the flow lines of fn within a triangle, it is not at first obvious that a
linear superposition of basis functions is capable of representing, say, a constant current flowing
in an arbitrary direction within a triangle. That this is possible, however, can be seen with the
aid of Figure A.3, which shows a triangle T q with edges arbitrarily labeled 1, 2, and 3 (in effect,
we employ here a local indexing scheme, in contrast to the global indexing scheme used earlier).
With the vectors ρ1, ρ2 and ρ3 as shown, the basis functions in T q are f i = (li/2Aq)ρi, i = 1,
2, 3, where Aq is the triangle area and where, for simplicity, the current reference directions are
assumed to be out of the triangle for each edge. It is apparent from the figure and the definition
of f i that the linear combinations l2f1 − l1f2 and l3f1 − l1f3 are constant vectors for every point
r in T q and are parallel to sides 3 and 2, respectively. Since the two composite forms are linearly
independent (i.e., nonparallel), a constant vector of arbitrary magnitude and direction within T q

may be synthesized by an appropriate linear combination of the two forms, as asserted.

A.1.2 Testing Procedure of RWG Basis Function

The next step in the method of moments is to select a testing procedure. We choose as testing
functions the expansion functions fn, developed in the previous section. With a symmetric product
defined as
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Figure A.3: Local coordinates and edges for source triangle T q with the observation point in
triangle T p

< f ,g >≡
∫

S
f · gdS (A.5)

we derive an integrodifferential equation for J by enforcing the boundary condition n̂ × (Einc +
Esca) = 0 on S, obtaining

−Einc
tan = (−jωA −∇Φ)tan, r on S (A.6)

Equation (A.6) is tested with fm, yielding

< Einc,fm >= jω < A,fm > + < ∇Φ,fm > (A.7)

If one makes use of a surface vector calculus identity and the properties of fm at the edges of S,
the last term in (A.7) can be rewritten as:

< ∇Φ,fm >= −
∫

S
Φ∇s · fmdS (A.8)

With (A.2), the integral in (A.8) may now be written and approximated as follows:∫
S

Φ∇s · fmdS

= lm

(
1

A+
m

∫
T+

m

ΦdS − 1
A−

m

∫
T−

m

ΦdS

)
∼= lm[Φ(rc+

m ) − Φ(rc−
m )] (A.9)

In (A.9) the average of Φ over each triangle is approximated by the value of Φ at the triangle
centroid. With similar approximations, the vector potential and incident field terms in (A.7) may
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be written as 〈{
Einc,

A

}
,fm

〉

= lm

[
1

2A+
m

∫
T+

m

{
Einc

A

}
· ρ+

mdS +
1

2A−
m

∫
T−

m

{
Einc

A

}
· ρ−mdS

]

∼= lm
2

[{
Einc(rc+

m )
A(rc+

m )

}
· ρc+

m +
{

Einc(rc−
m )

A(rc−
m )

}
· ρc−

m

]
(A.10)

where the integral over each triangle is eliminated by approximating Einc (or A) in each triangle
by its value at the triangle centroid and carrying out integrations similar to those used to obtain
(A.3). With (A.2 A.9 A.10), (A.7) now becomes:

jωlm

[
A(rc+

m ) · ρc+
m

2
+ A(rc−

m ) · ρc−
m

2

]
+ lm

[
Φ(rc−

m ) − Φ(rc+
m )
]

= lm

[
Einc(rc+

m ) · ρc+
m

2
+ Einc(rc−

m ) · ρc−
m

2

]
(A.11)

which is the equation enforced at each triangle edge, m = 1, 2, ...N.

We remark that another interpretation of the testing procedure arriving at A.11 is also possible.
One may equate line integrals of the form

∫
Cm

F ·dr, where F represents the right and left sides of
(A.6), and Cm is the piecewise linear path from the point rc+

m to the midpoint of edge m and thence
to rC−

m . Einc and A can be approximated along each portion of the path by their respective values
at the triangle centroids. The resulting equality, apart from the factor lm, is (A.11). Under either
interpretation, the testing procedure reduces the differentiability requirement on Φ in (A.6) by
integrating ∇Φ first, the procedure having been constructed with this goal in mind. The purpose
of approximations (A.9) and (A.10) is to eliminate surface integrals of the potential quantities,
allowing a double surface integral to be approximated by a quantity involving a single surface
integral in the numerical computation of the moment matrix elements. These approximations are
justified by observing that the potentials are locally smooth within each subdomain, as follows
from their integral definitions and the locally smooth nature of the source representation in terms
of the basis functions.

A.1.3 Elements of the Matrix and Excitation Vector of RWG

Substitution of the current expansion (A.4) into (A.11) yields an N ×N system of linear equations
which may be written in matrix form as

ZI = V (A.12)

where Z = [Zmn] is an N × N matrix and I = [In] and V = [Vm] are column vectors of length N .
Elements of Z and V are given by

Zmn = lm

[
jω

(
A+

mn · ρc+
m

2
+ A−

mn · ρc−
m

2

)
+ Φ−

mn − Φ+
mn

]
(A.13)
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Vm = lm

(
E+

m · ρc+
m

2
+ E−

m · ρc−
m

2

)
(A.14)

where

A±
mn =

μ

4π

∫
S

fn(r′)
e−jkR±

m

R±
m

dS′ (A.15)

Φ±
mn = − 1

4πjωε

∫
S
∇′

S · fn(r′)
e−jkR±

m

R±
m

dS′ (A.16)

R±
m = |rc±

m − r′| (A.17)

and

E±
m = Einc(rc±

m ) (A.18)

For plane wave incidence, we set

Ei(r) = (Eθθ̂0 + Eφφ̂0)ejk·r (A.19)

where the propagation vector k is

k = k(sin θ0 cos φ0x̂ + sin θ0 sin φ0ŷ + cos θ0ẑ) (A.20)

and (θ̂0, φ̂0) defines the angle of arrival of the plane wave in terms of the usual spherical coordinate
convention. Unit vectors θ0 and φ0 are constant vectors which coincide with the usual spherical
coordinate unit vectors only at points on the line from O in the direction of k.

Once the elements of the moment matrix and the forcing vector V are determined, one may solve
the resulting system of linear equations (A.12) for the unknown column vector I. The elements of
Z in (A.12) may be evaluated by naively computing Zmn directly by (A.13) (with aid of (A.15)
and (A.16)) for each index combination m and n. However, as shown in the next section, this
procedure is extremely inefficient since the integrals required for each combination of m and n are
generally required for a number of other combinations as well.

A.2 SWG Basis Function – Tetrahedral Modeling Method for
Volume Element

A.2.1 Development of SWG Basis Function

The volume V is assumed to be subdivided into a number of tetrahedral elements such that a
homogeneous or inhomogeneous dielectric region is approximated by a number of tetrahedrons, in
each of which the dielectric properties are approximated as constant. A homogeneous dielectric
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Figure A.4: Pair of tetrahedrons and geometrical parameters associated with nth face

region is bounded by a surface that is approximated by triangular faces assigned so as to fit the
shape of the surface well.

Once the volume of the scatterer has been appropriately modeled by tetrahedral volumes, the
faces of the tetrahedrons are of primary importance for the development of the basis functions.
Figure A.4 shows two tetrahedrons T+

n and T−
n , associated with the nth face of the subdivided

region V modeling a scatterer. Points in T+
n may be designated either by the position vector

position vector r defined with respect to O, or by the position vector ρ+
n defined with respect

to the free vertex of T+
n . Similar remarks apply to points in T−

n and the position vector ρ−n ,
except that the latter is directed toward the free vertex of T−

n . The plus or minus designation of
a tetrahedron is determined by the choice of a positive flux reference direction, which is assumed
to be from T+

n to T−
n . The basis functions that are used for volume part of the moment method

solution of (2.15) are such that one basis function is associated with each face of the tetrahedral
model of V . The basis function associated with the nth face is

fn(r) =

⎧⎪⎨
⎪⎩

an

3V +
n

ρ+
n , r ∈ T+

n ;
an

3V −
n

ρ−n , r ∈ T−
n ;

0, otherwise.
(A.21)

where an is the area of the face and V ±
n is the volume of T±

n . (Note the convention that subscripts
refer to faces while superscripts refer to tetrahedrons.)

The unknown volume electric flux density that enters (2.15) through (2.11,2.13,2.14) can be
represented throughout V by

D(r) =
N∑

n=1

Dnfn(r) (A.22)

The summation is over the N faces that make up the tetrahedral model of V .

The basis functions fn(r) have several properties that make them useful for representing D(r).

1) Within each tetrahedron D(r) is the sum of four linearly independent basis functions (one
associated with each face) which can be combined to represent a constant vector in any direction.
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2) fn(r) has no component normal to any face except the common face of the conjoined pair
T+

n and T−
n .

3)The component of fn normal to the nth face is constant and continuous across the face
because the normal component of ρ±n along face n is just the height of T±

n with face n as the base
and the height expressed as 3V ±

n /an. This latter factor normalizes fn in (A.21) such that its flux
density normal to face n is unity, ensuring continuity of the component of fn, normal to the face.

4) The divergence of the basis function is

∇ · fn(r) =

⎧⎪⎨
⎪⎩

an

V +
n

, r ∈ T+
n ,

− an

V −
n

, r ∈ T−
n ,

0, otherwise.
(A.23)

where the divergence in T±
n is given by

(ρ±n )−2 ∂[±(ρ±n )2fn]
∂ρ±n

(A.24)

∇ · J(r) = −jωρ(r) (A.25)

The charge density is proportional to ∇ · fn through (A.25), (2.16) and (A.22)is constant within
each tetrahedron.

5) The moment of fn over T±
n is

∫
T±

n

fndv =
an

3
ρc±

n (A.26)

where ρc±
n is the vector between the free vertex and the centroid of T±

n with ρc−
n directed toward

and ρc+
n directed away from the vertex. (A.26) may be most easily derived by expressing the

integral in terms of volume coordinates.

6) If face n is on the boundary of V , then only one of the tetrahedrons, T+
n or T−

n , is interior
to V . In this case it is assumed that fn, is defined only over the interior tetrahedron and that the
exterior tetrahedron is not defined.

Some of the less obvious of these properties can be verified. An important interpretation of
(A.22) that follows from 1) and 3) is that the expansion coefficient Dn, represents the normal
component of D(r) at the nth face.

The modeling properties of the basis functions fn are similar to those of the rooftop functions
that are used to model surface current distributions. Property 1) guarantees that the expansion
(A.22) can provide at least a piecewise constant approximation to the flux density. Furthermore,
each function varies linearly with distance from its defining vertex. This provides some capability to
model linear field variations. However, like the rooftop functions, these basis functions are constant
in the transverse direction so they cannot accurately represent a vector field with arbitrary linear
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variation; they can reproduce linear variations of the field only if the variation is parallel to the
direction of the field defined by the basis function. In order to solve (2.15) with D(r) represented
by (A.2), it is necessary to find expressions for J(r) and ρ(r) in terms of the basis functions and
expansion coefficients. From (A.22) and (2.16)

J(r) = jω

N∑
n=1

Dnκ(r)fn(r) (A.27)

In(A.27), the parameter κ(r) is taken inside the summation to emphasize that the polarization or
contrast current at each point in the body is a weighted sum of the basis functions at that point
times a factor that describes the medium at that point. By substituting (A.27) into (A.25) and
using (A.23), the charge density is found to be represented by

ρ(r) = −
N∑

n=1

Dnκ(r)∇ · fn(r) −
N∑

n=1

Dnfn(r) · ∇κ(r) (A.28)

The first summation is the induced volume charge densities ρvn associated with the basis functions
and can be evaluated with the aid of (A.23)

ρvn(r) =

⎧⎪⎨
⎪⎩

−Dnκ+
n

an

V +
n

, r ∈ T−
n

Dnκ−
n

an

V −
n

, r ∈ T−
n

0, otherwise
(A.29)

where κ+
n is the constant value of κ(r) in T±

n . The second summation in (A.28) represents the
induced surface charge densities associated with the basis functions. When the nth face separates
dissimilar media, κ is discontinuous and its gradient is a generalized function representing a surface
charge density ρsn, residing on an,

ρsn(r) =
{

Dn(κ+
n − κ−

n ), r ∈ an

0, otherwise
(A.30)

An induced volume charge associated with each basis function exists in each tetrahedron for which
the medium parameters differ from those of free space. It can be shown that the formulation of the
problem in (2.11, 2.13, 2.14, 2.15, A.25) guarantees that the total volume charge in a homogeneous
region is zero. In the numerical procedure, the total volume charge, which is the sum of the volume
charges associated with the four basis functions in each tetrahedron, is not explicitly constrained to
be zero, but should be small for any solution that is close to the true solution. An induced surface
charge exists only on faces that separate dissimilar media, and the charge density is constant on
such faces. The correct surface charge representation is obtained at the faces because of the careful
construction of the representation of J . Equations (A.22), (A.27), and (A.28) can be used in
(2.11)-(2.14) to obtain an equation involving only the unknown coefficients Dn and known vector
functions.

A.2.2 Testing Procedure of SWG Basis Function

The next step in applying the method of moments is to select a testing procedure that will generate
N independent equations for the unknown expansion coefficients. The expansion functions fm
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developed in the previous section are chosen as testing functions. With a symmetric product
defined as

< f ,g >≡
∫

V
f · gdv (A.31)

(2.15) is tested with fm, yielding

< D/ε̂,fm > +jω < A,fm > + < ∇Φ,fm >=< Einc,fm >, m = 1, 2, · · · , N. (A.32)

This represents N equations for the N unknown coefficients {Dn} and can be written in matrix
form as

[Smn][Dn] = [Em] (A.33)

where [Smn] is an N ×N matrix with dimensions of m4/F , and [Dn] and [Em] are column vectors
of length N . Since the elements of [Smn] and [Emn] cannot be evaluated in closed form, it is
necessary to derive accurate and efficient numerical approximations for these quantities.Formulas
for the matrix (A.33) elements and some considerations relevant to their computation are given in
the next section

A.2.3 Elements of the Matrix and Excitation Vector of SWG

The formulas that are used to fill the matrix [Smn] and the excitation vector [Em] are derived from
(A.32) as follows. The first term of (A.32) can be written as

< D/ε̂,fm > =
N∑

n=1

Dn < fn/ε̂ >

=
N∑

n=1

Dn

[
1
ε̂+
n

∫
T+

m

fn · fmdv +
1
ε̂−n

∫
T−

m

fn · fmdv

]
(A.34)

(Recall that fm, is zero outside of T±
m These integrals can be evaluated by utilizing normalized

volume coordinates. By using the volume coordinate representation of the basis functions and
formulas for integration in volume coordinates, the integral of f i · f j over T p can be evaluated as∫

T p

f i · f jdv =
aiaj

9V P
[
8
5
|rcp|2 − (ri + rj) · rcp + (ri · rj)

− 1
10

(r1 · r2 + r1 · r3 + r1 · r4 + r2 · r3 + r2 · r4 + r3 · r4)] (A.35)

where rcpis the vector from O to the centroid of Tp and r1 , r2, r3, r4 are vectors from O to the
vertices of T . This result can be used to complete the evaluation of (A.34). The second term and
the right side of (A.32) both involve an integration over a vector field, and they can be treated
similarly. In particular, A and Einc are assumed to vary slowly enough to be approximated within
each tetrahedron by their values at the centroid of the tetrahedron. Then, by (A.26),〈(

A

Einc

)
,fm

〉
≈
(

A(rc+
m )

Einc(rc+
m )

)
· amρc+

m

3
+
(

A(rc−
m )

Einc(rc−
m )

)
· amρc−

m

3
(A.36)
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If T+
m or T−

m is not in V , then the corresponding term is absent in (A.36). In (A.36), rc±
m is the

vector from O to the centroid of T±
m and ρc±

m is the vector from the vertex opposite am in T±
m to

the centroid of Tm.

The scalar potential term of (A.32) can be written as

< ∇Φ,fm >=
∫

S
Φfm · n̂ds −

∫
V

Φ∇ · fmdv (A.37)

where Sis the boundary of V . Since the tangential component of fm, is discontinuous at tetrahedral
boundaries, verification of (A.37) requires that the contributions from individual tetrahedral volume
elements and their boundaries be summed. This leads directly to the last term of (A.37). The
surface integral follows from the fact that the normal component of fm, is continuous or vanishes
at all boundaries internal to V . Then, with the assumption that Φ is sufficiently slowly varying
that it may be replaced by its value at the centroid of a tetrahedron or face,(A.37) becomes

< ∇Φ,fm >=
{

am[Φ(rc−
m ) − Φ(rc+

m )], T+
m and T−

m in V
±am[Φ(rc±

m ± 1/3ρc±
m ) − Φ(rc±

m )], T∓
mnot inV

(A.38)

The argument (rc±
m ± 1/3ρc±

m ) denotes that Φ is evaluated at the centroid of face m when T±
m is

not in V . When the elements of [Smn] are calculated, the contributions to A and Φ from a single
basis function are needed. These are given by

An(r) =
μ0an

12π

[
κ+

n

V +
n

∫
T+

n

ρ+
n

e−jkR

R
dv′ +

κ−
n

V −
n

∫
T−

n

ρ−n
e−jkR

R
dv′
]

(A.39)

Φn(r) =
−an

jω4πε0

[
κ+

n

V +
n

∫
T+

n

e−jkR

R
dv′ − κ−

n

V −
n

∫
T−

n

e−jkR

R
dv′ − (κ+

n − κ−
n )

an

∫
an

e−jkR

R
ds′
]

(A.40)

where κ±
n is taken to be zero if T±

n is not in V .

By expressing them in terms of normalized volume coordinates, the integrals in (A.39) and
(A.40) may be readily evaluated numerically. They can, in fact, be expressed in terms of four
independent scalar integrals over each tetrahedron. These four integrals contribute to 16 different
elements of [Smn]. Considerable savings in computation time is achieved by making use of these
multiple contributions.
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